
Microsoft Copilot on Malicious Macros 1

Microsoft Copilot on Word macro malware,
data security, and WordPerfect

A series of questions and responses initiated and recorded by Stephen Cobb, July, 2025.

[Copilot output is formatted in black Times Roman font. Cobb’s input is coded in bold blue
Arial. Any other formatting is carried over from Copilot screen output that pasted into a
blank Word doc.]

Cobb: Please give me a 400-word description of the Concept Word macro virus. It
should read like an encyclopedia entry and cover the origin, discovery, operation,
and significance of this particular piece of malware.

🦠 Concept Word Macro Virus

The Concept virus, discovered in July 1995, was the first macro virus to spread widely in the
wild, targeting Microsoft Word documents. Written in Visual Basic for Applications (VBA),
it marked a turning point in malware history by exploiting the macro functionality embedded in
productivity software rather than traditional executable files.

🧬 Origin and Discovery

Concept was not the first macro virus ever created—that distinction belongs to DMV, a proof-of-
concept virus—but it was the first to be found actively spreading among users. It was
accidentally distributed by Microsoft itself, preinstalled on CD-ROMs such as the Windows
95 Software Compatibility Test disc sent to hundreds of companies. This unintentional release
helped the virus gain rapid traction across corporate environments.

⚙ Operation and Behavior

Concept infected Word documents by embedding five macro modules: AAAZAO, AAAZFS,
AutoOpen, FileSaveAs, and PayLoad. When a user opened an infected .doc file, the virus
checked the global Word template NORMAL.DOT for existing infection. If clean, it copied its
macros to the template, ensuring that any new document saved using “Save As” would carry
the virus.

The virus displayed a dialog box with the number “1” and an “OK” button—likely intended to
track generations, though it had no functional payload. The PayLoad macro itself was inert,
containing only a one line comment:

Sub MAIN
REM That's enough to prove my point
End Sub

This minimalist design emphasized the virus’s role as a demonstration of macro-based
propagation rather than a destructive tool.

Microsoft Copilot on Malicious Macros 2

📈 Significance and Impact

Concept’s emergence redefined the threat landscape. By targeting document macros, it
bypassed traditional antivirus defenses focused on executable files. Within months, Concept
accounted for over 30% of reported virus infections, peaking at 50% in 1997. It infected tens
of thousands of systems and prompted a major shift in how antivirus software scanned
documents.

Its legacy includes:

• Popularizing macro viruses, which dominated malware trends through the late 1990s.
• Influencing Microsoft’s security policies, leading to macros being disabled by default

in Office 2000 and later.
• Foreshadowing email-borne threats, as Concept-infected documents were often shared

via email, paving the way for viruses like Melissa.

Concept was a quiet revolution—proof that even benign-looking automation could be
weaponized. Want to explore how Melissa built on Concept’s foundation?

Cobb: Yes

🦠 Fantastic! Let’s dig into how the Melissa virus built upon the groundwork laid by Concept,
and then took macro malware to a whole new level.

📜 Origins and Release

Melissa was unleashed in March 1999 by David L. Smith, who named it after a stripper he
reportedly knew. Unlike Concept, which spread passively via document sharing, Melissa was
designed to be viral. It was one of the first macro viruses to use email to propagate at scale.

Smith uploaded the infected Word document to an alt.sex Usenet newsgroup, disguising it as a
list of passwords to adult websites. Users who downloaded and opened the file unknowingly
triggered Melissa’s propagation.

📧 Viral Mechanics: How It Worked

• Macro-based payload: Like Concept, Melissa used VBA macros embedded in Word
documents.

• Auto-execution: The macro would run when the file was opened, infecting the user's
NORMAL.DOT template.

• Email weaponization: Melissa accessed the user's Outlook address book and sent itself
to the first 50 contacts. Each email would contain:

• Subject: Important Message From [Username]
• Body: Here is that document you asked for... don’t show anyone else ;-)
• Attachment: [infected .doc file]

This approach massively accelerated its spread—Melissa infected over 100,000 machines in
days, even forcing companies like Microsoft to temporarily shut down their email systems.

Microsoft Copilot on Malicious Macros 3

🔍 Legacy and Impact

Melissa marked a key transition in malware history:

• Concept proved macros could be dangerous.
• Melissa proved they could be catastrophic.

It helped shape the trajectory of:

• Email-borne malware, inspiring viruses like ILOVEYOU and Anna Kournikova.
• Antivirus evolution, leading to stricter macro settings and email scanning protocols.
• Cybercrime awareness, prompting FBI involvement and David Smith’s eventual arrest.

He received a 20-month sentence and a hefty fine.

Melissa was clever, cheeky, and devastating—and it all started with a macro virus template not
unlike Concept’s. Want to follow the thread to ILOVEYOU, or dive into how Microsoft changed
its macro security in response?

Cobb: Let's follow to ILOVEYOU, with a focus on the impact and cost of both
MELISSA and ILOVEYOU

💥 Absolutely—Melissa and ILOVEYOU weren’t just viruses; they were seismic events in the
history of cybersecurity. Let’s break down their impact and cost, side by side:

🦠 Melissa Virus (1999)

Impact:

• 📧 Infected over 1 million computers globally.
• 🏢 Disrupted email systems at Microsoft, Intel, and even the U.S. Marine Corps.
• 🛑 Forced companies to shut down email servers to contain the spread.
• 🧠 Raised awareness of macro viruses and the need for email hygiene.

Cost:

• 💸 Estimated damage: $80 million USD.
• 🔧 Costs included cleanup, system recovery, and lost productivity—not data theft.

💌 ILOVEYOU Virus (2000)

Impact:

• 🌍 Infected over 50 million computers in just 10 days.
• 🏛 Crippled systems at the Pentagon, CIA, UK Parliament, and major corporations like

Ford3.
• 📉 Overwrote critical files, hid MP3s, and stole passwords6.

Microsoft Copilot on Malicious Macros 4

• 📬 Used social engineering—posing as a love letter—to trick users into opening the
attachment.

Cost:

• 💰 Estimated damage: $10–15 billion USD7.
• 🧹 Cleanup costs included restoring backups, repairing systems, and implementing new

security protocols.

🔍 Key Differences

Feature Melissa (1999) ILOVEYOU (2000)
Spread Method Word macro + Outlook VBScript via email
Infections ~1 million ~50 million
Damage Type Email overload File corruption + theft
Estimated Cost $80 million $10–15 billion
Social Engineering Mild Highly manipulative

Both viruses reshaped cybersecurity:

• Melissa showed how macros could be weaponized.
• ILOVEYOU proved that emotional manipulation could be just as dangerous as

technical exploits.

Want to explore how ILOVEYOU led to legal reforms or inspired future worms like Anna
Kournikova?

Cobb: Can you describe how macro viruses continue be a problem through malware
like Emotet, Qbot, and TrickBot.

🧬 Absolutely. Macro viruses haven’t disappeared—they’ve evolved into sophisticated malware
delivery systems like Emotet, Qbot, and TrickBot, which continue to exploit Microsoft Office
macros to infiltrate networks and launch devastating attacks.

📌 How Macro Viruses Still Work

Modern macro malware typically arrives via phishing emails with malicious Word or Excel
attachments. When a user opens the file and enables macros, embedded Visual Basic for
Applications (VBA) code executes silently, triggering a chain of infections.

🦠 Emotet: The Comeback Trojan

• First emerged in 2014 as a banking trojan.
• Uses malicious macros in Word/Excel documents to download payloads via

PowerShell.
• Steals email contacts and sends itself to them, creating self-propagating spam

campaigns.
• Acts as a malware loader, often delivering TrickBot, Qbot, or ransomware like Ryuk.

Microsoft Copilot on Malicious Macros 5

• After a global takedown in 2021, Emotet resurfaced in late 2021, distributed via
TrickBot infections2.

🧪 Qbot (aka QakBot)

• Originally a banking trojan, now a modular malware platform.
• Delivered via macro-laden Office documents, often disguised as invoices or business

communications.
• Steals credentials, performs lateral movement, and drops additional malware.
• Frequently used in ransomware campaigns, including those involving Conti and REvil.

🧠 TrickBot: The Modular Menace

• Emerged in 2016 as a successor to Dyre.
• Delivered via Emotet or phishing emails with macro-enabled documents2.
• Uses macros to launch PowerShell scripts, bypass security, and establish persistence.
• Steals banking credentials, browser data, and system info.
• Acts as a gateway for ransomware, including Ryuk and Conti3.

🔥 Why They Still Matter

Threat Vector Macro Malware Role Impact
Phishing Emails Entry point via Office attachments Widespread infections
Credential Theft Steals login info via macros Data breaches, financial loss
Malware Delivery Drops ransomware and trojans System lockdowns, extortion
Network Propagation Uses stolen credentials to spread Enterprise-wide compromise

Macro viruses today are not just nuisances—they’re launchpads for multi-stage attacks. Their
simplicity makes them effective, and their payloads make them dangerous.

Want to explore how Microsoft and antivirus vendors are countering these threats—or how
attackers bypass those defenses?

Cobb: When was Visual Basic for Applications introduced into Microsoft Word?

📅 Visual Basic for Applications (VBA) was introduced into Microsoft Word with Word 97,
released in late 1996.

Before that, Word used a different macro language called WordBasic, which was more limited
and less consistent with other Office applications. The shift to VBA in Word 97 was part of
Microsoft’s broader strategy to unify automation across the Office suite—Excel had already
adopted VBA in Excel 5.0 (1993).

This transition allowed users to:

• Write more powerful and flexible macros.
• Share code across Word, Excel, and other Office apps.
• Automate complex tasks using a consistent programming model.

Microsoft Copilot on Malicious Macros 6

VBA quickly became a cornerstone of Office customization—and, as you’ve seen, a vector for
macro-based malware like Concept and Melissa. Want to explore how WordBasic differed from
VBA or how macro security evolved after Word 97?

Cobb: When was Word Basic introduced?

🕰 WordBasic was introduced with Microsoft Word for Windows 1.0, which debuted in 1989.

It remained the primary macro language for Word through versions 1.0 to 6.0, spanning the
early 1990s. WordBasic was a simplified scripting language designed to automate tasks within
Word, and it allowed users to record and run macros for formatting, editing, and document
management.

By 1997, with the release of Word 97, Microsoft replaced WordBasic with Visual Basic for
Applications (VBA), a more powerful and unified macro language used across the Office suite.

Cobb: Was there any controversy surrounding Word Basic back in 1989 or prior to
that?

📜 There wasn’t any major public controversy surrounding WordBasic itself in 1989 or
earlier—but there were a few interesting tensions and quirks in the broader context of Microsoft
Word’s development:

🧠 WordBasic’s Quiet Debut

• WordBasic was introduced with Word for Windows 1.0 in 1989, replacing the earlier
macro system used in Word for DOS.

• It was a proprietary scripting language designed to automate tasks in Word, but it
didn’t attract much attention outside developer circles.

• Unlike later macro systems (like VBA), WordBasic wasn’t widely exploited for
malware—so it avoided the kind of notoriety that came with macro viruses in the late
1990s.

🕵 Copy Protection Oddities

• Early versions of Word included quirky anti-debugging mechanisms. If tampering was
detected, the program would display the cryptic message:

🥊 Competitive Friction

• Microsoft Word was still struggling against WordPerfect in the late 1980s.
WordBasic’s introduction was part of Microsoft’s push to make Word more
programmable and appealing to power users.

• The real controversy came later, when Microsoft bundled Word with Windows and
Office, leading to accusations of anti-competitive practices—but that was more about
business strategy than WordBasic itself.

So while WordBasic didn’t spark headlines or lawsuits, it quietly laid the groundwork for the
much more powerful—and controversial—Visual Basic for Applications (VBA) that followed

Microsoft Copilot on Malicious Macros 7

in Word 97. Want to explore how VBA changed the game or how macro scripting evolved
across Office?

Cobb: I remember that WordPerfect had very powerful macro capability but they
were stored separately from document files. I am trying to find out why Microsoft
decided to store macros inside document files. Was that decision discussed back in
the 1980s?

That’s a sharp observation—and it touches on a pivotal design choice that shaped decades of
document security and automation.

In the 1980s, Microsoft didn’t publicly document a specific debate over storing macros inside
Word documents, but the decision became clear with the release of Word 6.0 for Windows
(1993) and especially Word 97 (1996), when Visual Basic for Applications (VBA) was
introduced. This marked the shift from WordBasic, which had limited macro capabilities and
stored macros externally, to a more integrated model.

Here’s why Microsoft likely chose to embed macros within documents:

🧩 Integration & Portability

• Embedding macros made documents self-contained: users could share a file and ensure
the automation traveled with it.

• This was especially useful in enterprise environments where templates and automation
needed to be portable across systems.

🛠 Ease of Use

• Microsoft aimed to make Office automation accessible to non-programmers.
• By embedding macros, users could record actions and save them directly in the

document—no need to manage external macro libraries like WordPerfect’s .wcm files.

📈 Competitive Strategy

• WordPerfect stored macros separately, which was more secure but less intuitive for
casual users.

• Microsoft’s approach aligned with its broader strategy of tight integration across
Office apps, making Word, Excel, and PowerPoint feel like a unified suite.

⚠ Security Trade-Offs

• This design made macro viruses like Concept (1995) and Melissa (1999) possible, since
macros could execute automatically when a document was opened.

• Microsoft later responded by introducing macro security settings, digital signatures,
and Trust Center policies to mitigate these risks.

While there’s no record of a formal debate in the 1980s, the shift toward embedded macros was
part of Microsoft’s push to make Office the dominant productivity platform—prioritizing
convenience and power, even at the cost of early security vulnerabilities.

Microsoft Copilot on Malicious Macros 8

Would you like to compare how WordPerfect’s macro architecture influenced its resilience
against macro viruses?

Cobb: Yes please

🛡 Great choice—WordPerfect’s macro architecture is a fascinating case study in security by
design. Let’s explore how its structure helped it resist the wave of macro viruses that plagued
Microsoft Word.

🧠 WordPerfect’s Macro Architecture

• Macro Language: WordPerfect used a scripting system called PerfectScript, which
evolved from earlier macro systems in WordPerfect for DOS.

• Storage Model: Macros were stored as separate .wpm or .wcm files, not embedded in
documents. This meant:

o Documents remained clean and portable.
o Macros had to be explicitly loaded and executed by the user.

• Execution Model: Macros were not auto-executed when opening a document. Users
had to manually trigger them via keyboard shortcuts or menu commands.

• Sandboxing: Macros operated within a controlled environment, limiting their ability to
interact with system-level resources or other applications.

🦠 Why This Prevented Macro Viruses

Feature WordPerfect Microsoft Word (pre-2000)
Macro Storage External files (.wpm, .wcm) Embedded in .doc files
Auto-Execution Manual trigger required Auto-run via AutoOpen, AutoExec
Virus Propagation Risk Very low High—spread via shared documents
Security Controls Limited but effective Weak until macro security was added

Because WordPerfect macros were not embedded, they couldn’t hitch a ride with documents
the way Word macros like Concept or Melissa did. Even if a malicious macro existed, it
wouldn’t execute unless the user deliberately ran it.

🧩 Legacy and Influence

• WordPerfect’s architecture was praised for its resilience, especially during the macro
virus boom of the late 1990s.

• Microsoft eventually adopted similar safeguards:
o Macro warnings and Trust Center settings.
o Digital signatures for macro validation.
o Macros disabled by default in newer Office versions.

So while WordPerfect didn’t dominate the market, its macro design was ahead of its time in
terms of security. Want to explore how PerfectScript evolved or how WordPerfect macros are
used today in legal and government settings?

Yes, how are WordPerfect macros used today in legal and government settings?

Microsoft Copilot on Malicious Macros 9

📂 WordPerfect macros remain a trusted tool in legal and government environments,
especially where consistency, precision, and automation are critical. Here's how they're still
actively used today:

⚖ Legal Sector Applications

• Document Automation: Macros streamline repetitive tasks like inserting boilerplate
language, formatting pleadings, and generating signature blocks.

• Client/Matter Management: Tools like the Client/Matter File Saver macro help
organize documents by client and case, automatically creating folders and naming files
with timestamps.

• Bates Numbering: Built-in macros apply sequential numbering to legal documents for
discovery and archival purposes.

• Transcript Formatting: Court reporters and legal typists use macros to insert speaker
labels (e.g., “THE COURT:”) and apply consistent formatting across transcripts.

• Pleading Templates: Macros like pleading.wcm generate formatted pleading paper
with line numbers and margins, often embedded in watermark styles for easy reuse.

🏛 Government Use Cases

• Standardized Forms: Agencies use macros to populate forms with consistent headers,
footers, and metadata.

• Version Control: Macros like Numbered Save automatically append version numbers to
filenames, aiding document tracking.

• Security & Accuracy: Because macros are stored separately from documents (.wcm
files), they reduce the risk of embedded malware and ensure controlled execution.

🧰 Tools & Resources

• Macro Manager: Introduced in WordPerfect X7, this tool lets users browse, run, and
edit macros from a centralized interface.

• Barry MacDonnell’s Toolbox: A popular resource offering free downloadable macros
tailored for legal workflows, including formatting tools and document cleanup utilities.

WordPerfect’s macro system—especially its separation from document files—continues to offer
robust automation with minimal security risk, making it a favorite in sectors where reliability
and control matter most.

